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Mayer's variational problem of determining the optimum trajectories of a rocket moving with constant exhaust velocity and 
bounded mass flow rate in a Newtonian field is considered. New analytic solutions are obtained for plane intermediate-thrust 
arcs, using the canonical system of equations of the variational problem and the properties of the switching function. These solutions 
represent certain spiral trajectories. In motion with a fixed time, at arbitrary angular distances, these solutions satisfy Robbins' 
necessary optimum condition. As an example the problem of minimizing the characteristic velocity of flight between elliptic orbits 
is considered. Copyright © 1996 Elsevier Science Ltd. 

1. As we know, the optimum trajectory of a rocket in a Newtonian field may consist of arcs of zero 
thrust (ZT), intermediate thrust (IT) and maximum thrust (MT) [1]. In a spherical system of coordinates 
with origin at the attracting centre, the motion of a rocket along these arcs is governed by a system of 
canonical equations for Mayer's variational problem [2] 

v = c m k  
- ~ - - ~ - - - r ,  r=v, M=-m 

k = k r ,  k r = ~ k - 3 ~ s ( ~ r ) r ,  ~.v = - ~ - L  (1.1) 

with Hamiltonian 

H = - ( k r )  rg--- f + (krv) + ×m 

where r = (r, 0, 0) is the radius vector with initial point at the attracting centre, v = (~1, ~2, ~3) is the 
velocity, M is the mass, c = const is the exhaust velocity, m(0 ~< m ~< m) is the mass flow rate, k = (L1, 
~ ,  L3) is the basis..vector, kr = (k4, kS, kr) is the vector conjugate to the radius vector, X7 is a factor 
conjugate to the mass, × is the switching function. The unit vector 1 = k/L, whose direction coincides 
with that of  the tlmtst vector, and the quantity m are treated as control variables. The components of 
all vectors are given in spherical coordinates. 

We know that the appearance of IT arcs is a degenerate case of the variational problem [3]. Despite 
the fact that, up to 1the present, various analytical solutions are known for IT arcs--a spiral [1, 4], circular 
[5] and spherical trajectories [6]~t--the existence of other solutions for IT arcs and their optimality are 
still unsolved problems. Here we shall show that in two dimensions the first integrals of the canonical 
system of equations of the variational problem 

v 2 g _L2 +k4vl 
H = L I r2 r r 

tPrikL MaL Mekh. ~1.  60, No. 3, pp. 426-432, 1996. 
:~See also AZIMOV D. M., Investigation of optimum trajectories in a central Newtonian field. Candidate dissertation, Moscow, 

1991. 
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~,qv, + ~..fl 2 - 2 ~ , 4 r + c ~ , l n ( - - ~ - ) - 3 C t =  C, 

k T M  = c k  = C 2, ~,5 = C3 

(1.2) 

where C, C1, C 2 and C3 are constants of integration, and the invariant relations 

~1~4 + ~'1~2 v---2 - Z'2 t ' l +  ~5 ~'___L = 0 (1.3) 
/" r t" 

- , ~ (1,4-) 

(~,2 - - 5 ~ , ] )  U I +2kl(~,lv I +~,202)-4~,1~,4r = 0 (1.5) 

that follow from the condition that the switching function vanish identically [5], enable us to obtain 
new analytic solutions of the canonical system of equations for IT arcs in a Newtonian field and to 
investigate them for optimality. 

Thus, eliminating ~,4 from the first equation of (1.2) and the relation (1.4), using (1.3), we obtain the 
equations 

(~.1/) 2 -- ~,2/)1 ) 2 + ~,5(~,11/2 -- ~,21J I )  = C'Aqr + ~]la /- 

(~'/~ 2 - k2 v I + k_s)2 = ~,] g _ 3~t ~'~ 
" F ?.~2 

which yield an equation for r 

C2Z,4g2r 4 + 6~tC'k2Z,5r 2 + (3pZ22~4Z,~ - ttZZ2;L2)r +91a2~ 8 = 0  

Depending on the sign of the discriminant 

• 4 ~ 4 ( 3 ~ 2 _ 1 ~ 2 [ ~ 4  ( 3 ~ . ~ )  ~9' 
o : ,  ~8 t ~<~ J [ ~ t  ~-,;-~<c~ 

(1.6) 

and the sign of the quantity ~qC, Eq. (1.6) can have the following solutions. 
If Q t> 0 and klC < 0, then 

t r l )  
(1.7) 

where 

, _  : +   osoc< o),l 

(f3 t g ~ =  tg , I l a , ~  n l+2cosec (2~)>O 
4 '  

16Z3s 9 
sin ]] = 16~tk3s9 _ ~ , ~ ( 3 s  2 _ l )  2 / C '  s = s in  ~0 



Intermediate-thrust arcs of rocket trajectories in a Newtonian field 423 

If 

1 + 2cosec(2a) ~< 0 

then the IT arcs have no real solutions. 
If Q < 0 and ~.1C < 0, then 

(1.8) 

where 

,/1 2cos ¢ t -  1 >0 
3 

COS~ ~ - 
161~3s9 _ ~,s4(l  _ 3s2 )2 / ( 8 C )  

16[d~3S 9 

If 

2cos~- 1 ~ 0 

then 

r = F 3 + ( F ~  y2 (1.9) 

where 

.,, 

If the last inequality does not hold, there are no real solutions for IT arcs. Suppose that, using one 
of formulae (1.7)-(1.9), we have determined the radius vector 

r=R(~) (1.10) 

where qu is the angle between the basis-vector and the perpendicular to the radius vector in Lawden's 
system of coordinates [1]. Then, using system (1.1), the last two equations of (1.2) and formulae 
(1.3)--(1.5), the other solutions of the canonical system may be expressed in terms of elementary functions 
and quadratures 

2k 1 

2 ~2  

O=TJ'~'~"~" 2 (P 5, M= Moex p 

~.1=~, ~ .2=~ ,  ~.4=(C.~-YI) k ~. _C2 
Rs ' - -M 

I (3 7"2s4 +C'~R+ ~ 3y~ +2C~ 
(1.11) 
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Y~ = 5 s  2 - 3 ' 

p = c i  k ~ l ( 1 5 s 2 - 3 ) + S C ~ s  2 + 3 C ( t _ C 4  ) 
- ~ . . . .  5s ~ - 3 " 

where C4 and Cs are constants of integration. If the quantities a~l, 1)2) R, M, L4 have been determined, 
the equality ×(w) = 0 yields the following expression for the mass flow rate 

10g~.2s 2 -V ~k2r(3- 13.) 2 ) - 2~,k4r 2 (su  I - 3 k v  2 ) - 4~'~ r3 + O~---C~ u r -I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  _ . . . . . .  2 . . . .  

m = . . . .  c j~,2r  2 (3  -- 5J  2 ) 
(1.12) 

Formulae (1.10)-(1.12) represent solutions of the canonical equations (1.1) for IT arcs without 
reference to the optimality criterion. It should be noted that when ~,1 < 0 and C > 0 the solutions (1.7) 
and (1.11) satisfy Robbins' necessary condition for optimality [3]. 

2. We now consider some special cases. 
1. If the conditions of the variational problem do not imply that the time the rocket is in motion is 

fixed, and the functional of the problem is independent of time, then C = 0 [1]. Equation (1.6) then 
yields an expression for the radius vector 

r -  911~,2 j6 (2.1) 
- ~ 1 - 3J 2 

identical with the formula that defines Lawden's spiral [1] (see also Remark 1). Solutions of system 
(1.1) corresponding to these spirals have been obtained for the case k = 1 [1, 7]. 

We will now present other solutions of system (1.1) for IT arcs, corresponding to (2.1). These solutions 
may be determined using the second and third equations of (1.2), Eqs (1.3) and (1.4), and the equations 

k=u l, O=u 2 / r  (2.2) 

in the form 

l - u 2 = c ,  I - a s  

u ) = ~ s) 3~,  s 

t 91 a~'2 t j5Sl 1 ~ S) - 3 s  4 ^ 
===~32 J (i_-==~'s2)2 d(p+to,  O='~.l ' s4--"~--d~+Oo 

M o C ~ k C . ) ( - t 8 s  6 -39s  4 +35s 2 - 6 )  ] M--W6 -2 [ ......... 3s3; ' . . . . . .  C ) .  , 

~'1 =2ks, ~'2 =2tk, ~'4 = C~(I-3s2)~ 
271.t~,3s 9 

Z, 7 = C2 s I =9s  4 -17s  2 +6 
M '  

(2.3) 

where to and 00 are constants of integration. The quantity m is determined from (1.12), with r, 91, 92, 
M, ~,4 given by (2.1) and the appropriate formulae of system (2.3). The solutions (2.1) and (2.3) describe 
motion along spiral trajectories different from previously known spirals. 

It can be shown that the second and third equations of system (1.2), Eqs (1.3)-(1.6) and the equations 
of system (2.2) also enable one to find two further classes of analytic solutions for system (1.1), but 
here the formulae for the radius vector are identical with (2.1). Since the fact that the Lawden spirals 
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are no optimal was established using the formula for r [3], it follows that the solutions (2.1) and (2.3) 
presented above, as well as the two classes of analytic solutions whose derivation has just been described, 
will also not satis@t Robbins' necessary optimum condition. 

Hence, by investigating the canonical system of equations, and taking the properties of the switching 
function into accotmt, one can considerably extend the class of analytic solutions for plane IT arcs. Note 
that the solutions obtained in this section were obtained without reference to the objective functional. 

Remark 1. It cart be verified directly (using Lawden's equations of motion to investigate the IT arcs 
and the canonical system (1.1)) that the constant of integrationA in the formulae for Lawden's spirals, 
the cyclic constant ~ and the magnitude of the radius vector satisfy the relation 

~,5 = -ZA (2.4) 

2. If the manoeuvre time is fixed (C ~ 0), the finite value of the polar angle is not given and the 
objective function is not an explicit function of the polar angle (this happens, in particular, in various 
problems associated with minimizing the characteristic velocity), then the cyclic integral (the last equality 
of system (1.2)) and the transversality conditions imply 

~,5 = 0 (2.5) 

over the entire optimum trajectory. We will derive analytic solutions for IT arcs in such cases. 
When (2.5) is true, the first equation of (1.2) and relations (1.3) and (1.4) immediately give 

r 2 = -3g%Cqs 3 (2.6) 

Here necessarily s > 0, C < 0 or s < 0, C > 0. The other solutions of system (1.1) corresponding to (2.5) 
and (2.6) may be found by using the second equation of system (1.2)-(1.4), (1.12), (2.2) in the form 

6k~fz ~]~(9- 7s 2 ) ( gXs2 1 
VI= (3_S2'), rE= ~,(3_S2), Z=~, Csr+ r " 

t = Z 3 I s - +to 

(2.7) 

O=~-zctgg~-¼Z~+O o, Z = 

[~22( k~/Z(3 + s2 "~l M=M0ex  p C,+3Ct -  ~ks(3_s2 ) ) j  

where to and 00 are constants of integration. It can be shown that the solutions (2.6) and (2.7) describe 
motion along certain spiral trajectories, also different from those already known. 

Note that if the conditions s < 0 and C > 0 are satisfied, one can verify that the solution (2.6) satisfies 
Robbins' necessary optimum condition ~ r  < 0 [3]. Consequently, the IT solutions (2.6) and (2.7) may 
be used in optimum flight problems with fixed time and arbitrary angular distance, and also when the 
objective functional does not depend explicitly on the angular distance in a Newtonian field [8]. An 
example will be presented below. 

Remark 2. Since the solutions (2.1) and (2.3) contain the cyclic constant %5, while the solutions for 
Lawden's spirals involve the constantA, it would be interesting to consider these solutions taking the 
end conditions and transversality conditions into account. If there is no restriction on the angular 
distance, the cyclic constant satisfies condition (2.5). Consequently, the constant A will also vanish. In 
that case the IT arcs described by (2.1) and (2.3), as well as the Lawden spirals (see (2.4)), degenerate 
into ZT arcs. It follows that (2.1), (2.3) and the Lawden spirals can only be solutions for IT arcs if one 
is given the final w~lue of the polar angle or if the objective functional depends explicitly on the polar 
angle. In particular, if one is considering the problem of minimizing the characteristic velocity [1, 7] 
and there is no resltriction on the angular distance, the Lawden spirals are not solutions for IT ares. 
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Example. Let us consider the problem of minimizing the characteristic velocity of flight between 
coplanar intersecting elliptic orbits in a central Newtonian field. At the starting time we have the following 
conditions: ll = 0.8; Pl = 8200 km, to1 = -1.5, and c = 3 km/s. The phase of motion along the initial 
orbit is assumed to be arbitrary. At the final instant of time one has the conditions 12 = 0.7,p2 = 9500 
km, and to1 = 0.5. The flight time is fixed in advance at T = 500 s. The phase of motion along the final 
orbit is also considered to be arbitrary. An impulse solution of this problem was obtained in [9]. 

We shall show that the flight just defined may be implemented with a single IT arc. In that case the 
trajectory will consist of two arcs: one with ZT and the other with IT, and the initial and final points of 
the latter are switching points. At these points one must ensure that the conditions of continuity hold 
for the basis vector, the radius vector and the velocity vector; the switching function must vanish there. 
Hence we have the following conditions for the first switching point 

-3~ t~'sin3 (Pl = P 2CI (1 +e  I cosfl )2 

36Z, l~,2(Cr2+~-P-)=e21B--~-sin2j'i(3Z.2 -Z,])2 
Pt 

(7~21 - 9~'2 )2 ( Cr2 + ~l~t ) ~'t r 
a 2  

= P'* l  (]  + e, cos~ )(37. 2 - ~.~ )2 
P] 

Z, sin q01 = Bje ] sin fi + CI2(fl ) 

~,COS (pt =Bt(l+etcosfl)+ DI 
1 + e I cos fl 

~ k - ~  7 = 0  

+ Cl2(f~ ) 

(2.8) 

At the second switching point we have conditions similar to (2.8) except that the subscript on the quanti- 
ties 9,f, l,p, B and D, will now be 2. Here 

ctg f ! + e cos f df 
12(f) =/(1 +ecos f )  "~ esin f sin f~ sin2 f ( I  + ecos f)2 

In addition, at the final instant of time we have a transversality condition 

~7 = - a  J / a M  t = c / M  t 

Since k7 = 0 along the final orbit, it follows that ~. = 1 at the final point of the IT arc. Simultaneous 
solution of system (2.8) subject to the condi t ionf  = 0 - to yields 

fl =0.8736, Bj =0.4022, q)t =0.4022, D I =0,5300 

f2 =0.6625, B 2 =0.4099, tp2 =0.2211, D 2 =0.5538 

The time of motion over the IT arc amounts to 436.57 s. The ratio of the required characteristic velocity 
to the corresponding angular velocity is 1.4749, whereas the ratio or the impulse case is 1.2964. The 
results of solving this problem show that, as far as fuel consumption is concerned, the requirements of 
impulse-thrust and intermediate-thrust flight are comparable. 

However, analysis of the system of equations (2.7) suggests that IT flight with a sufficiently large C 
value is preferable to the flight considered here. 
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